На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
La multiplicación es una operación binaria y derivada de la suma que se establece en un conjunto numérico.[2] En aritmética, es una de las cuatro operaciones elementales, junto con la suma, la resta y la división, y es la operación inversa de esta última. Esto significa que para toda multiplicación hay una división, por ejemplo para «5 por 2 igual a 10» la división equivalente es «10 dividido entre 2 igual a 5», o «10 dividido entre 5 igual a 2».
Existen dos signos para indicar esta operación entre números naturales: el aspa "×" y el punto gordo a media altura ( • ). En el caso de variables representadas por letras (solo letras o mezcla) se usa el punto (no el aspa) pero se puede prescindir de él por ejemplo 3ab (se lee «tres a b») xy + 2y (se lee «equis i más dos i»)
Multiplicar una cantidad por un número consiste en sumar dicha cantidad tantas veces como indica el número.[3] Así, 4×3 (léase «cuatro multiplicado por tres» o, simplemente, «cuatro por tres») es igual a sumar tres veces el número 4 (4+4+4)[4](nota[5]) También se puede interpretar como 3 filas de 4 objetos, o 4 filas de 3 (véase el dibujo). 4 y 3 son los factores, y 12, el resultado de la operación, es el producto.[6] La multiplicación está asociada al concepto de área geométrica: es fácil ver que el área de un rectángulo se obtiene multiplicando la longitud de ambos lados, basta con imaginarnos la superficie cubierta con baldosas cuadradas.[7] Podemos multiplicar dos números o más, y da igual en qué orden efectuemos la operación o cómo agrupemos los números; siempre se obtendrá el mismo resultado:
3 • 4 • 5 = 5 • 3 • 4 = 4 • 5 • 3 = 12 • 5 = 15 • 4 = 20 • 3 = 60
El resultado de la multiplicación de dos o más números se llama producto. Los números que se multiplican se llaman factores o coeficientes, e individualmente: multiplicando (número a sumar o número que se está multiplicando) y multiplicador (veces que se suma el multiplicando). Esta diferenciación tiene poco sentido cuando, en el conjunto donde esté definido el producto, se da la propiedad conmutativa de la multiplicación (por ejemplo, en los conjuntos numéricos: 3×7 = 7×3, es decir, el orden de los factores no altera el producto). Sin embargo puede ser útil si se usa para referirse al multiplicador de una expresión algebraica (ej: en
o ,
3 es el multiplicador o coeficiente, mientras que el monomio es el multiplicando).
La potenciación es un caso particular de la multiplicación donde el exponente indica las veces que debe multiplicarse un número por sí mismo. Ejemplo: 2 • 2 • 2 • 2 • 2 • 2 • = 2 6 = 64
Aquí, 6 es el exponente, y 2 la base.
En álgebra moderna se suele usar la denominación «cociente» o «multiplicación» con su notación habitual «·» para designar la operación externa en un módulo, para designar también la segunda operación que se define en un anillo (aquella para la que no está definido el elemento inverso del 0), o para designar la operación que dota a un conjunto de estructura de grupo. La operación inversa de la multiplicación es la división.[8]